"""
.. _streamlines_example:

Streamlines
~~~~~~~~~~~

Integrate a vector field to generate streamlines.
"""

# %%
# This example generates streamlines of blood velocity. An isosurface of speed
# provides context. The starting positions for the streamtubes were determined
# by experimenting with the data.

# sphinx_gallery_thumbnail_number = 3
from __future__ import annotations

import numpy as np

import pyvista as pv
from pyvista import examples

# %%
# Carotid
# +++++++
# Download a sample dataset containing a vector field that can be integrated.

mesh = examples.download_carotid()

# %%
# Run the stream line filtering algorithm using random seed points inside a
# sphere with radius of 2.0.

streamlines, src = mesh.streamlines(
    return_source=True,
    max_length=100.0,
    initial_step_length=2.0,
    terminal_speed=0.1,
    n_points=25,
    source_radius=2.0,
    source_center=(133.1, 116.3, 5.0),
)

# %%
# Display the results. Please note that because this dataset's velocity field
# was measured with low resolution, many streamlines travel outside the artery.

p = pv.Plotter()
p.add_mesh(mesh.outline(), color='k')
p.add_mesh(streamlines.tube(radius=0.15))
p.add_mesh(src)
p.add_mesh(mesh.contour([160]).extract_all_edges(), color='grey', opacity=0.25)
p.camera_position = [(182.0, 177.0, 50), (139, 105, 19), (-0.2, -0.2, 1)]
p.show()


# %%
# Blood Vessels
# +++++++++++++
# Here is another example of blood flow:

mesh = examples.download_blood_vessels().cell_data_to_point_data()
mesh.set_active_scalars('velocity')
streamlines, src = mesh.streamlines(
    return_source=True,
    source_radius=10,
    source_center=(92.46, 74.37, 135.5),
)


# %%
boundary = mesh.decimate_boundary().extract_all_edges()

sargs = dict(vertical=True, title_font_size=16)
p = pv.Plotter()
p.add_mesh(streamlines.tube(radius=0.2), lighting=False, scalar_bar_args=sargs)
p.add_mesh(src)
p.add_mesh(boundary, color='grey', opacity=0.25)
p.camera_position = [(10, 9.5, -43), (87.0, 73.5, 123.0), (-0.5, -0.7, 0.5)]
p.show()


# %%
# A source mesh can also be provided using the
# :func:`pyvista.DataSetFilters.streamlines_from_source`
# filter, for example if an inlet surface is available.  In this example, the
# inlet surface is extracted just inside the domain for use as the seed for
# the streamlines.

source_mesh = mesh.slice('z', origin=(0, 0, 182))  # inlet surface
# thin out ~40% points to get a nice density of streamlines
seed_mesh = source_mesh.decimate_boundary(0.4)
streamlines = mesh.streamlines_from_source(seed_mesh, integration_direction='forward')
# print *only* added arrays from streamlines filter
print('Added arrays from streamlines filter:')
print([array_name for array_name in streamlines.array_names if array_name not in mesh.array_names])

# %%
# Plot streamlines colored by the time along the streamlines.

sargs = dict(vertical=True, title_font_size=16)
p = pv.Plotter()
p.add_mesh(
    streamlines.tube(radius=0.2),
    scalars='IntegrationTime',
    clim=[0, 1000],
    lighting=False,
    scalar_bar_args=sargs,
)
p.add_mesh(boundary, color='grey', opacity=0.25)
p.add_mesh(source_mesh, color='red')
p.camera_position = [(10, 9.5, -43), (87.0, 73.5, 123.0), (-0.5, -0.7, 0.5)]
p.show()


# %%
# Kitchen
# +++++++
#
kpos = [(-6.68, 11.9, 11.6), (3.5, 2.5, 1.26), (0.45, -0.4, 0.8)]

mesh = examples.download_kitchen()
kitchen = examples.download_kitchen(split=True)

# %%
streamlines = mesh.streamlines(n_points=40, source_center=(0.08, 3, 0.71), max_length=200)

# %%
p = pv.Plotter()
p.add_mesh(mesh.outline(), color='k')
p.add_mesh(kitchen, color=True)
p.add_mesh(streamlines.tube(radius=0.01), scalars='velocity', lighting=False)
p.camera_position = kpos
p.show()


# %%
# Custom 3D Vector Field
# ++++++++++++++++++++++
#

nx = 20
ny = 15
nz = 5

origin = (-(nx - 1) * 0.1 / 2, -(ny - 1) * 0.1 / 2, -(nz - 1) * 0.1 / 2)
mesh = pv.ImageData(dimensions=(nx, ny, nz), spacing=(0.1, 0.1, 0.1), origin=origin)
x = mesh.points[:, 0]
y = mesh.points[:, 1]
z = mesh.points[:, 2]
vectors = np.empty((mesh.n_points, 3))
vectors[:, 0] = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
vectors[:, 1] = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
vectors[:, 2] = np.sqrt(3.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) * np.sin(np.pi * z)

mesh['vectors'] = vectors
# %%
stream, src = mesh.streamlines(
    'vectors',
    return_source=True,
    terminal_speed=0.0,
    n_points=200,
    source_radius=0.1,
)
# %%
cpos = [(1.2, 1.2, 1.2), (-0.0, -0.0, -0.0), (0.0, 0.0, 1.0)]
stream.tube(radius=0.0015).plot(cpos=cpos)
# %%
# .. tags:: filter
